Information

Bit, Binary, Information Perspective

Information Questions

For much of history *until the mid-20th century, humanity didn't have clear answers for the following questions:

- What is information?
- How can information be measured?
- What is the fundamental unit of information?

 A concrete example: how could I collection a student's understanding of the course content?

Historical Concept: Hard to Define

- Ancient civilization: languages and symbols.
- Print press (1450s): books.
- Industrial revolution (18th-19th centuries): telegraph and telephone
- Digital age (20th century): computer and digital technology.
- Modern era (21st century): information explosion and IoT.

Definition

- Information refers to the result of processing, analyzing, and interpreting data, which provides meaning, relevance, and usefulness to the recipient.
- It is data in a context.
- It has many forms including text, image, audio, video...

Claude Shannon's Information Theory

- Published in a seminal 1948 paper <u>"A Mathematical</u> <u>Theory of Communication."</u>
- Three main contributions:
 - Entropy as a measure of information
 - Channel capacity and noise
 - Redundancy and coding theory

Entropy

- Entropy measures the uncertainty or unpredictability of a random variable or the amount of information required to describe the state of a system.
 - The more chaos/unpredictable, the higher the entropy.
 - A sure thing has 0 entropy: sun rises tomorrow morning.
- Shannon provided a clear and precise mathematical definition of entropy/information, resolving thousands of years of confusion surrounding the concept.

Entropy as a measure of information

- Information as a Measure of Uncertainty Reduction.
 - When we receive a message, it reduces our uncertainty about the source or content of that message.
 - The more unpredictable the message, the more information it contains.
- Bit as the basic unit of information.

Channel Capacity and Noise

- It sets the fundamental limits of data transmission
- The Nyquist-Shannon sampling theorem states that "To perfectly reconstruct a continuous-time signal from its discrete samples, the sampling rate must be at least twice the highest frequency present in the signal."
- An example:
 - human hearing typically ranges from 20 Hz to 20 kHz.
 - A sampling rate of at least 40 kHz is required for perfect reconstruction.
 - Hi-Fi CD audio: 44.1 kHz / 16-bit. Super Audio CD (SACD): 96kHz/24-bit

Redundancy and Coding Theory

- It laid the foundation for error correction and efficient encoding techniques.
- It later influenced digital communication, data compression, and cryptography.
- Applications
 - Wi-Fi & Mobile (4G, 5G) communication
 - Memory (RAM, SSD, HDD): ECC RAM corrects bit flips due to cosmic rays.

Bit: A Fair Coin Toss

- Two outcomes: heads (H) or tails (T).
- Equal Probability: P(H) = P(T) = 0.5.
- Entropy H(X) measures the average amount of information produced by a stochastic source of data.
- The entropy/uncertainty is 1 bit if you know the result, you have 1 bit of information.

$$H(X) = -\sum_{i=1}^{n} p_i log_2(p_i)$$

$$= -(0.5log_2(0.5) + 0.5log_2(0.5))$$

$$= -(log_2(0.5)) = 1$$

Less Uncertainty: Unfair Coin Toss

- If the coin is not fair but comes up heads or tails with probabilities P(H) = 0.7 and P(T) = 0.3, then there is less uncertainty.
- Every time it is tossed, the head is more likely to come up than the tail.
- The information is less than 1 bit:

$$H(X) = -0.7 * log0.7 - 0.3 * log0.3 = 0.8816$$

A Bit

- A bit is a binary unit that can take one of two values: 0 or 1
- A bit can represent any two distinct values: yes/no, true/false, on/off, stand/sit, day/night, high/low, big/small, cat/dog,...

- Two coins, four multiple-choice questions
 - Two bits

Binary is Universal

- Binary system: The binary system uses only two digits: 0 and 1. This simplicity makes it ideal for electronic representation and manipulation.
- Mathematical convenience: Bits are easily manipulated using Boolean algebra, making mathematical operations and data processing straightforward.
- Universal applicability: Bits can represent various types of information, such as numbers, text, images, and audio, making them a universal unit of information.

Boolean Algebra

- AND (Conjunction): Represented by the symbol Λ . In binary, AND is performed by multiplying the two bits. Example: $1 \wedge 1 = 1$, $1 \wedge 0 = 0$, $0 \wedge 1 = 0$, $0 \wedge 0 = 0$.
- OR (Disjunction): Represented by the symbol \vee . In binary, OR is performed by adding the two bits. Example: $1 \vee 1 = 1$, $1 \vee 0 = 1$, $0 \vee 1 = 1$, $0 \vee 0 = 0$.
- NOT (Negation): Represented by the symbol \neg . In binary, NOT is performed by flipping the bit. Example: $\neg 1 = 0$, $\neg 0 = 1$.
- XOR (Exclusive OR): Represented by the symbol \oplus . In binary, XOR is performed by adding the two bits **modulo 2**. Example: $1 \oplus 1 = 0$, $1 \oplus 0 = 1$, $0 \oplus 1 = 1$, $0 \oplus 0 = 0$.

Boolean Algebra is Fundamental

- All these Boolean operations can be easily implemented using transistor-based logical gates.
- Boolean operations can implement math operations like addition, subtraction, and division using binary numbers and transistor-based logical gates.
- How transistors do math (Youtube): https://www.youtube.com/watch?v=VBDoT8o4q00

The Code Book

The Hidden Language of Computer Hardware and Software

SECOND EDITION

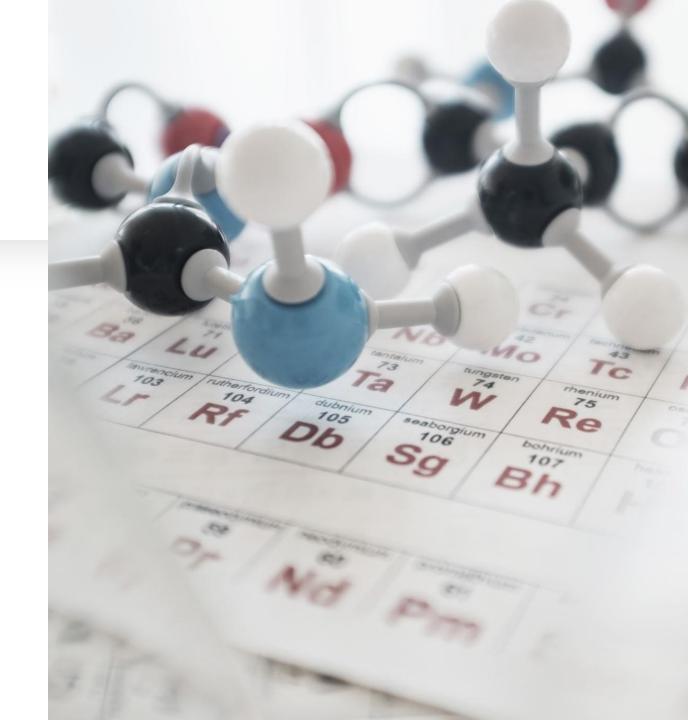
CHARLES PETZOLD

More Bits

- One bit can only represent two different things/states.
- More bits are needed in complex cases.
- Two bits can represent four states.
 - 00
 - 01
 - 10
 - 11
- n bits can represent 2 ^ n states or different things

Byte

- A byte is a group of 8 bits.
- It can represent 2 ^ 8 = 256 different things.
- It is the basic unit of measurement for data storage and transmission.


 In old days, a cell phone text message has a size limit of 160 characters (160B): this limited the original Tweet length to 140 characters.

Size You Should Know

- A kilobyte (KB) is equal to 1,024 bytes, about a thousand bytes. It is about the size of a small text file.
- A megabyte (MB) is equal to 1,048,576 bytes, or 1,024KB, about a million bytes. A frame of HD video is about 6MB.
- A gigabyte (GB) is equal to 1,073,741,824 bytes, or 1,024MB, about a billion bytes. A typical laptop memory size is between 4GB and 64GB. An average 4K movie have a size of 100GB.
- A terabyte (TB) is equal to 1,099,511,627,776 bytes, or 1,024GB, about a trillion bytes. A home computer hard drive may have 1TB to 10TB.
- A petabyte (PB) is equal to 1,125,899,906,842,624 bytes, or 1,024TB. In 2023, YouTube hosted 4.3PB data each day and Facebook produced 4PB data each day. Source: Edge Delta.

Bigger: Better to Know

- An exabyte (EB) is equal to 1,024PB.
- A zettabyte (ZB) is equal to 1,024EB. In 2023, the world created around 120ZB of data. <u>Source: Edge Delta</u>.
- A yottabyte (YB) is equal to 1,024ZB.
- •

Telcom vs Computer

In computer, when people talk about the size of memory and file, the unit of measurement is based on byte such as B, KB, MB, GB etc.

- 1 KB = 1024B, 1MB = 1024 KB
- The factor is 1024

In telecom and communication, the unit of measurement is bit, using lowercase b.

- 1 kb = 1000b, 1mb = 1000kb, 1gb = 1000mb, 1tb = 1000gb
- it uses the factor of 1000, not 1024.

Binary Numbers

- A decimal number can be represented by one or more binary digits, where each bit represents a power of 2.
- Each binary digit has a corresponding place value.
 - The rightmost bit that has a place value of 1 = 2⁰
 - The 2^{nd} bit from the right has a place value of $2 = 2^1$
 - the 3rd bit has a place value of 4 = 2²
 - and so on and so forth
 - It is a tradition in computer science to count from 0, therefore the nth bit has a place value of 2 = 2ⁿ

2 ⁴	2 ³	2 ²	21	20	
16	8	4	2	1	
0	0	0	0	0	0 0

Binary Number Examples

Do it Manually: 1010

- 1. Write down the binary number: 1010
- 2.Start from the right, get the place value:

$$2^{0} = 1, 2^{1} = 2, 2^{2} = 4, 2^{3} = 8$$

3. Multiply each binary digit by the corresponding power of 2:

$$1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1 = 10$$

4. The result is the decimal equivalent: 10

Decimal to Binary

- We divide the decimal number by 2 repeatedly, keeping track of the remainders.
- The remainders, read from bottom to top, form the binary equivalent of the decimal number.
- For example, to convert the decimal number 10 to binary:

```
10 ÷ 2 = 5 (remainder 0)
5 ÷ 2 = 2 (remainder 1)
2 ÷ 2 = 1 (remainder 0)
1 ÷ 2 = 0 (remainder 1)
```

 Reading the remainders from bottom to top, we get the binary equivalent: 1010.

Hexadecimal

- Hexadecimal is used in computers because it provides a more efficient way to represent binary code, which is the fundamental language of computers.
- It uses 16 distinct symbols to represent numbers:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.
 - A-F represent the numbers 10-15

Conversion Between Hexadecimal and Binary

- To convert a hexadecimal number to a binary number, write it as a four-digit bits: 0 as 0000, 1 as 0001, 2 as 0010, ..., F as 1111.
 - The hexadecimal number 2F3 is 0010 1111 0011.
- To convert a binary number to a hexadecimal number
 - from the rightmost bit, group the binary digits into sets of four
 - pad the leftmost group with zeros in its left
 - then convert each set to the corresponding hexadecimal number.
 - For example, 1011110011 is 0010 1111 0011 that is 2F3 in hexadecimal.

Hexadecimal to Decimal

- Write down the hexadecimal number and identify its digits and their positions.
- Multiply each digit by 16 raised to the power of its position, starting from 0 at the rightmost digit.
- Sum all the results to get the decimal equivalent.

For example, to convert the hexadecimal number 2F3 to decimal:

- Identify the digits and their positions: 2 is in position 2, F in position 1, 3 in position 0.
- Multiply each digit by 16 raised to the power of its position: 2 * (16 ^2) = 512, F * (16 ^ 1) = 15 * 16 = 240, 3 * (16 ^ 0) = 3.
- Sum the result: 512 + 240 + 3 = 755

Decimal to Hexadecimal

- Divide the decimal number by 16 and record the quotient and the remainder.
- Repeat the division using the quotient from the previous step until the quotient is 0.
- Write down the remainders in reverse order. These remainders represent the hexadecimal digits.

For example, to convert the decimal number 755 to hexadecimal:

- Divide by 16: 755 / 16 = 47 remainder 3
- Divide the quotient by 16: 47 / 16 = 2 remainder 15
- Divide the quotient by 16: 2 / 16 = 0 remainder 2
- Write the remainders in reverse order: 2F3

Text in Binary (7/8 bits)

ASCII	Char	Hex	Bin	ASCII	Char	Hex	Bin
32	space	20	0010 0000	54	6	36	0011 0110
33	!	21	0010 0001	55	7	37	0011 0111
34	"	22	0010 0010	56	8	38	0011 1000
35	#	23	0010 0011	57	9	39	0011 1001
36	\$	24	0010 0100	58	:	3A	0011 1010
37	%	25	0010 0101	59	;	3B	0011 1011
38	&	26	0010 0110	60	<	3C	0011 1100
39	•	27	0010 0110	61	=	3D	0011 1101
40	(28	0010 1000	62	>	3E	0011 1110
41)	29	0010 1001	63	?	3F	0011 1111
42	*	2A	0010 1010	64	@	40	0100 0000
43	+	2B	0010 1011	91	[5B	0101 1011
44	,	2C	0010 1100	92	١	5C	0101 1100
45	-	2D	0010 1101	93]	5D	0101 1101
46		2E	0010 1110	94	^	5E	0101 1110
47	/	2F	0010 1111	95	-	5F	0101 1111
48	0	30	0011 0000	96	`	60	0110 0000
49	1	31	0011 0001	123	{	7B	0111 1011
50	2	32	0011 0010	124	ı	7C	0111 1100
51	3	33	0011 0011	125	}	7D	0111 1101
52	5	34	0011 0100	126	~	7E	0111 1110
53	5	35	0011 0101				

ASCII is not Enough

- With the advent of globalization and the internet, the need for a universal language of characters became increasingly important
- Unicode was first introduced in 1991 to create a standard that would allow computers to represent and exchange text in any language.
- The Unicode standard includes over 143,000 characters, supports over 150 languages and scripts.
- One of the key features of Unicode is its ability to represent a vast range of characters, including letters, digits, symbols, and even emojis.

Unicode

- Unicode is a system that enables computers to represent characters from any language using one to four bytes.
 - It starts with one byte for basic characters like English letters and common symbols.
 - As the complexity of the characters increases, more bytes are used: two bytes for extended characters found in languages like Latin, Greek, and Cyrillic;
 - Three bytes for characters from common languages such as Chinese, Arabic, and Hindi;
 - Four bytes for rare characters, emojis, and historic texts.

This flexible encoding allows Unicode to cover a vast array of characters from different languages and symbols, making it the standard for text representation in digital systems.

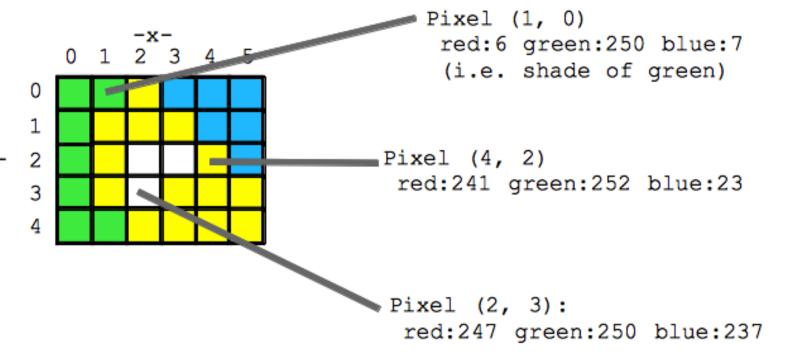
Unicode Examples

```
Latin: A (U+0041), ñ (U+00F1);
Greek: \alpha (U+03B1), \Omega (U+03A9);
Math: \pi (U+03C0), \infty (U+221E);
Currency: $ (U+0024), € (U+20AC);
Emojis: \bigcirc (U+1F60A), \bigcirc (U+1F44D).
```

The "U+" notation represents the Unicode code point in hexadecimal form.

Screen Picture

• A picture in a computer screen is a collection of millions of these pixels, arranged in a grid to create a complete image.


Resolutions:

- 1080p (Full HD, FHD): 1920x1080 pixels, commonly used for gaming and streaming.
- 1440p (2K, Quad HD, QHD): 2560x1440 pixels, versatile for various uses, including gaming and office work.
- 4K (Ultra HD, UHD): 3840x2160 pixels, ideal for sharp image and text clarity, often used for professional applications.
- 5K: 5120x2880 pixels, offers high pixel density and is commonly used with Mac computers for photo editing and other tasks requiring sharp images.

Pixel and RGB

- A screen pixel is the smallest unit of a digital image, representing a single point on a computer screen.
- It is made up of three-color components red, green, and blue (RGB) each with an intensity value ranging from 0 to 255.
- Each pixel's color and intensity contribute to the overall appearance of the picture, allowing for a wide range of colors, shades, and details to be displayed on the screen.
- As the pixels are arranged and lit up, they form a cohesive image, making up the digital pictures

Pixel and Color

An Example

- To display a red pixel of Red (R: 255, G: 0, B: 0)
- The binary Code is R: 11111111 (255), G: 00000000 (0), B: 00000000 (0).
- Combined Binary Code is 11111111 00000000 00000000, or FF0000 in hexadecimal.
- This combined binary code represents a single pixel with maximum red intensity and no green or blue intensity.
- Actual screen representation can be more complex, involving additional factors like alpha channels (transparency) and color depth.

CSS Color Codes

Color	CSS Color Name	Hex Code #RPGGBB	Decimal Code (R,G,B)
	Red	#FF0000	rgb (255,0,0)
	Orange	#FFA500	rgb (255,165,0)
	Yellow	#FFFF00	rgb (255,225,0)
	Green	#008000	rgb (0,128,0)
	Cyan	#00FFFF	rgb (0,255,225)
	Blue	#0000FF	rgb (0,0,225)
	Purple	#800080	rgb (128,0,128)
	Pink	#FFC0CB	rgb (255,192,203)
	Gray	#808080	rgb (128,128,128)
	Brown	#A52A2A	rgb (165,42,42)

www.educba.com

Video

- Video is represented by breaking down each frame into tiny pixels.
- A 1080p video frame consists of 1920 x 1080 pixels
 - each represented by a 24-bit binary code (8 bits for red, 8 bits for green, and 8 bits for blue).
 - This results in a total of 2,073,600 binary digits per frame!
 - Digital video compression reduces the amount of data required to store or transmit video content.

Sound

- Sound is represented by sampling audio waves and assigning binary codes to each sample.
- A CD-quality audio signal
 - sampled 44,100 (44.1 kHZ) times per second
 - sample represented by a 16-bit binary code
 - two channel stereo, this results in a total of 44,100 * 16 * 2 = 1,411,200 (about 1.411 Mbps)
 - For a 74-minute CD, it is about 1411200 bit/second * 60 second/minute
 * 74 minute / 8 bit/byte = 740MB before compression
 - Algorithms like MP3, AAC, and FLAC compress the record to a size from 74MB to 370MB.

The Information Perspective

- Business: data processing
- Social life: communication and collaboration
- Physics: It from Bit
- Human: DNA sequences,

It From Bit

- "It from bit": John Archibald Wheeler
 - https://historyofinformation.com/detail.php?id=5041
- "Otherwise stated, every physical quantity, every it, derives its ultimate significance from bits, binary yes-orno indications, a conclusion which we epitomize in the phrase, it from bit."

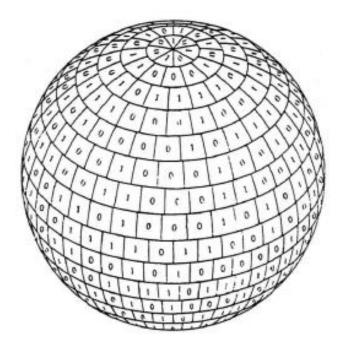
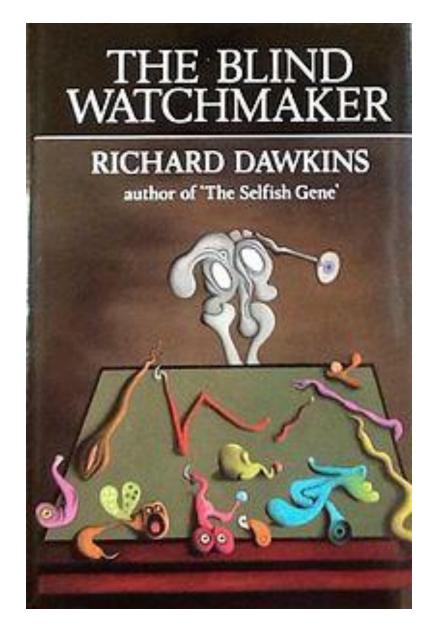



Fig. 19.1. Symbolic representation of the "telephone number" of the particular one of the 2^N conceivable, but by now indistinguishable, configurations out of which this particular blackhole, of Bekenstein number N and horizon area $4N\hbar log_e 2$, was put together. Symbol, also, in a broader sense, of the theme that every physical entity, every it, derives from bits. Reproduced from JGST, p.220.

The Code of Life

 "What lies at the heart of every living thing is not a fire, not warm breath, not a 'spark of life'. It is information, words, instructions. If you want a metaphor, don't think of fires and sparks and breath. Think, instead, of a billion discrete, digital characters carved in tablets of crystal." Page 112.

To Learn More

The Information By James Gleick By James Gleick The Information By James Gleick The Information A History, By James Gleick The Information By James Gleick A Theory, By James Gleick The Information By James Gleick A Flood By James Gleick By James Gleick The Information By James Gleick The Information By James Gleick The Information The Information Author of Chaos